Garisl adalah sejajar dengan garis m dan garis g memotong garis I dan m. Tentukan sudut-sudut yang bersebrangan dalam. DN D. Nuryani Master Teacher Mahasiswa/Alumni Universitas Padjadjaran Jawaban terverifikasi Jawaban uraian di atas adalah pasangan sudut-sudut yang saling bersebrangan dalam. Pembahasan Duagaris dikatakan saling berpotongan apabila garis tersebut terletak pada satu bidang datar dan mempunyai satu titik potong. Dari definisi tersebut maka titik potong antara a. garis m dan n adalah titik v b. garis m dan p adalah titik y c. garis n dan q adalah titik w d. garis m dan q adalah titik z Perhatikan Gambar Berikut Sebutkan Pasangan Garis Mana Sajakah Yang Saling Sejajar Berpotongan Brainly Co Id from hubungan antar garis sejajar, berpotongan, dan berimpit. Garis dan sudut 193 gambar 7.6 contoh 7.1 gambar di bawah ini menunjukkan sebuah garis dengan empat titik yang berbeda. PengertianGaris Vertikal. Menurut Kamus Besar Bahasa Indonesia, vertikal adalah tegak lurus dari atas ke bawah atau kebalikannya. Garis ini membentuk garis bersudut 90 derajat tegak lurus dengan garis horizontal, permukaan bumi, atau bidang datar. Sedangkan menurut Pustekkom Kemdikbud, vertikal adalah sumbu yang tegak atau biasa disebut sumbu y. Padaanimasi tersebut dua buah garis yang saling tegak lurus adalah garis K dan N Dua buah garis dikatakan saling berpotongan jika kedua buah garis tersebut saling memotong satu dengan yang lainnya. Pada animasi tersebut dua buah garis yang saling berpotongan adalah garis L dan M JalantolLintasan rel keretaRol coasterKonsen jendelaSekat rak bukuPelajari lebih lanjut tentang Sudut dan GarisBenda-benda di rumahmu yang memiliki sudut siku-siku, sudut lancip, sudut tumpul → Pasangan garis mana sajakah yang saling sejajar, berpotongan, atau bersilang. → Sudut pada dua garis sejajar yang dipotonga satu garis → Detil Sudutdibentuk oleh pertemuan dua buah garis/sinar yang bertemu pada pangkalnya. Sudut dinotasikan dengan $\angle$. Pada sebuah sudut terdapat unsur-unsur, seperti kaki sudut, titik sudut, dan daerah sudut. Perkaliangradien dua garis yang saling tegak lurus sama dengan -1atau (m 1.m 2 = -1) g. Gradien garis dapat ditentukan dengan membandingkan selisih komponen y dan selisih komponen x dari P dan Q. Gradien garis yang melalui titik P dan Q adalah atau Contoh: Tentuka gradien garis yang melalui titik P(3,4) dan Q(5, -4)! Persamaangaris yang melalui titik (x1, y1) dan sejajar garis y = mx + c adalah y - y1 = m (x - x1). Persamaan garis yang melalui titik (x1, y1) dan tegak lurus garis y = mx + c adalah y - y1 = (-1/m) (x - x1). Persamaan garis yang melalui dua titik dapat diselesaikan dengan substitusi ke fungsi linear y = ax + b. Garisl dan garis m adalah pasangan garis yang saling . SD SMP. SMA Garis dan garis adalah pasangan garis yang saling . Berpotongan . Tegak lurus . Berimpit . Sejajar . FI. F. Isyrofinnisak. Master Teacher. Jawaban terverifikasi. Jawaban. jawaban yang benar adalah A. Pembahasan. 2 Persamaan garis lurus dengan gradein m dan melalui titik (x1,y1) adalah y-y1=m(x-x1) Contoh soal: 1. Tentukan gradien dari garis dengan persamaan berikut: a. y = -2x b. 3x + 2y = 8 2. Tentukan gradien garis yang melalui titik (3,7) dan (4,9) 3. Tentukan gradien garis yang sejajar garis dengan persamaan 3x + 6y = 7 4. Tentukan gradien garis Hasilkali gradien antara kedua garis yang saling tegak lurus adalah (-1) m 1 X m 2 = - 1. Garis Lurus. Bentuk umum dari persamaan garis lurus adalah y = mx + c atau ax Tentukan gradien garis yang menghubungkan pasangan titik P(- 3, 6) dan Q(5, - 4). Penyelesaian : Karena P(-3 , 6) maka x 1 = -3 dan y 1 = 6; Karena P(5 , -4) maka x 1 = 5 Kedudukantitik-titik yang berjarak sama yaitu d dari sebuah garis l adalah sepasang garis-garis sejajar yang masing-masing Dua garis ini letaknya saling tegak lurus dengan titik pusat (0,0), yang selanjutnya disebut sumbu koordinat. Sumbu vertikal disebut dengan pasangan absis x dan sumbu horizonal disebut ordinat y. Persamaan Garis Lurus PadaGambar 1.a, garis g dan garis h dikatakan saling sejajar dan dinotasikan dengan g//h g / / h. Akan tetapi, garis m dan n pada Gambar 1.b tidak sejajar, karena jika garis-garis tersebut diperpanjang sampai titik tertentu, maka kedua garis tersebut akan saling berpotongan. Dua Garis Sejajar yang Berpotongan dengan Garis Lain MeetMathadalah website pembelajaran matematika. Terdapat materi, contoh soal, maupun soal dan pembahasan. Sedangkan Bidang merupakan himpunan garis-garis yang mempunyai ukuran panjang dan lebar. A. Kedudukan Titik, Garis, dan Bidang. 1. Kedudukan Titik Terhadap Garis lebih tepatnya Garis DH Saling Tegak Lurus dengan garis GH. 7 4KjvkZb. MatematikaGEOMETRI Kelas 8 SMPKOORDINAT CARTESIUSPosisi Garis Terhadap Sumbu KoordinatPerhatikan bidang koordinat berikut. Garis l dan garis m adalah pasangan garis yang saling .... a. berpotongan b. tegak lurus c. berimpit d. sejajarPosisi Garis Terhadap Sumbu KoordinatKOORDINAT CARTESIUSGEOMETRIMatematikaRekomendasi video solusi lainnya0150Tentukan jarak antara titik A 2,2 dan B 5,2.0528Pada bidang koordinat, gambarlah garis yang melalui pasan...0619Diketahui titik A3, 0 dan B-2, 12. Pasangan titik yan...0049Diketahui titik K4,3 dan L-5,3. Jika dibuat garis yan...Teks videoPada soal kali ini kita akan mempelajari kedudukan garis terhadap Garis pertama kedudukan dua garis yang saling berpotongan yaitu kedudukan dua garis di mana Garis pertama dan garis kedua memiliki Tepat satu titik persekutuan yang kedua kedudukan dua garis yang saling tegak lurus yaitu kedudukan dua buah garis di mana Garis pertama dan garis kedua memiliki satu titik persekutuan yang membentuk sudut 90° yang ketiga kedudukan dua buah garis yang saling berhimpit yaitu kedudukan dua garis di mana Garis pertama dan garis kedua memiliki lebih dari satu titik perpotongan dan yang garis yang sejajar yaitu kedudukan dua garis yang tidak akan berpotongan meskipun kedua garis tersebut diperpanjang pada soal kali ini kita perhatikan garis l dan garis m kedua garis memiliki satu titik perpotongan namun sudutnya bukan 90° maka kedudukan kedua garis tersebut adalah saling berpotongan pilihan jawaban yang tepat adalah a. Dian sampai jumpa di pembahasan berikutnya Kubus adalah salah satu bentuk bangun ruang bangun datar yang cukup mudah dikenali. Di mana terdapat 6 buah sisi berbentuk persegi dan 12 rusuk berupa ruas garis. Setiap kubus terdapat pasangan garis saling sejajar, berpotongan, dan bersilangan. Setiap satu bidang pada kubus sejajar dengan satu bidang lain sehingga ada tiga pasang bidang yang saling sejajar. Kubus memiliki 6 sisi yang memiliki bentuk sama berupa persegi. Banyaknya rusuk dalam kubus berjumlah 12 yang panjangnya sama. Bangun ruang berbentuk kubus memiliki 2 macam diagonal yaitu diagonal sisi dan diagonal ruang. Banyak diagonal sisi kubus sama dengan dua kali sisi kubus yaitu 12 diagonal sisi. Sedangkan banyak diagonal ruang kubus sama dengan 4 diagonal ruang. Gambaran bangun ruang berbentuk kubus beserta keterangan bangian-bagiannya diberikan seperti gambar berikut. Baca Juga Rumus Volume Kubus Mana saja pasangan garis saling sejajar pada kubus ABCD-EFGH? Apa saja pasangan garis yang saling berpotongan dan bersilangan? Sobat idcshool dapat mencari tahu jawaban mana saja garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCD-EFGH melalui ulasan di bawah. Daftar isi Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganDaftar Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh Soal dan PembahasanContoh 1 – Menentukan Kedudukan Suatu Garis Terhadap Garis LainContoh 2 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh 3 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh 4 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Sebelumnya sobat idschool perlu mengetahui bagaimana dua garis dikatakan saling sejajar, berpotongan, dan bersilangan. Dari definisi tersebut, selanjutnya sobat idschool dapat menentukan pasangan garis saling sejajar, berpotongan, dan bersilangan pada suatu kubus. Dua buah garis dikatakan saling sejajar jika kedua garis tidak memiliki titik potong. Untuk dua garis saling berpotongan terdapat pada dua buah garis yang memiliki satu titik potong. Biasanya, dua buah garis yang saling sejajar dan berpotongan terdapat pada bidang datar yang sama. Contoh pasangan garis yang saling sejajar pada kubus adalah AB dan EF. Sedangkan contoh pasangan garis yang saling berpotongan adalah DC dam GC. Sedangkan dua buah ruas garis dikatakan saling bersilangan jika garis-garis tersebut terletak di bidang yang berbeda. Dua garis yang saling bersilangan tidak memiliki titik potong. Selain pasangan garis saling sejajar, berpotongan, dan bersilangan terdapat juga garis yang saling berimpit. Dua garis yang saling berimpit terletak pada satu garis lurus sehingga hanya terlihat sebagai satu garis. Baca Juga Materi Pengantar Dimensi Tiga Bangun Ruang Daftar Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan kubus dengan 12 rusuk yaitu AB, BC, CD, DA, AE, BF, CG, DH, EF, FG, GH, dan HE berikut. Pada kubus ABCD-EFGH di atas terdapat pasangan garis saling sejajar, berpotongan, dan bersilangan. Banyak pasangan garis saling sejajar, berpotongan, dan bersilangan berturut-turut adalah 18, 24, dan 24. Daftar pasangan garis saling sejajar, berpotongan, dan bersilangan terdapat pada daftar berikut. Daftar pasangan garis saling sejajar pada kubus ABCD-EFGH AB // CD; AB // GH; AB // EF; CD // EF; CD // GH; GH // EF; AE // BF; AE // CG; AE // DH; BF // CG; BF // DH; CG // DH; AD // BC; AD // FG; AD // EH; BC // FG; BC // EH; FG // EH Daftar pasangan garis saling berpotongan kubus ABCD-EFGH AD dan BC; AD dan CD; EF dan FG; EH dan GH; AB dan AD; BC dan CD; EF dan EH; EH dan GH; AB dan BF; AE dan EF; BF dan EF; AB dan AE; BC dan CG; BC dan BF; CG dan FG; BF dan FG; CD dan CG; CD dan DH; CG dan GH; DH dan BH; AD dan DH; AE dan EH; AD dan AE; DH dan EH Daftar pasangan garis saling bersilangan pada kubus ABCD-EFGH AB dan FG; AB dan EH; AB dan CG; AB dan DH; AD dan EF; AD dan GH; AD dan BF; AD dan CG; AE dan BC; AE dan FG; AE dan CD; AE dan BH; BC dan DH; BC dan EF; BC dan GH; BF dan EH; BF dan CD; BF dan GH; CG dan EG; CG dan EH; CD dan FG; CD dan EH; DH dan EF; DH dan FG Baca Juga [Dimensi Tiga] Jarak Garis ke Bidang pada Bangun Ruang Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana pasangan garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCD-EFGH. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Menentukan Kedudukan Suatu Garis Terhadap Garis Lain Contoh 2 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan gambar kubus di bawah! Pasangan garis yang saling bersilangan adalah ….A. AB dan GHB. BC dan CDC. AE dan CGD. DH dan EF Pembahasan Dua buah garis dikatakan bersilangan jika kedua garis terletak pada bidang yang berbeda dan tidak memiliki titik potong. Hubungan 2 garis yang terdapat pada pilihan jawaban adalah sebagai berikut. AB dan GH sejajar BC dan CD berpotongan AE dan CG sejajar DH dan EF bersilangan Jadi, pasangan garis yang saling bersilangan adalah DH dan EF. Jawaban D Baca Juga Rumus 4 Macam Bangun Ruang Sisi Datar dan Karakteristiknya Contoh 3 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Pembahasan Dua buah garis bersilangan terdapat pada 2 garis yang terletak pada bidang yang berbeda dan tidak memiliki titik potong. Garis pertama bersilangan tegak lurus dengan garis kedua jika terdapat pada garis ketiga yang sejajar garis pertama dan tegak lurus garis kedua. Sehingga, garis yang bersilangan tegak luru adalah BD dan AE. Jadi, pasangan garis yang saling bersilangan tegak lurus adalah BD dengan AE. Jawaban D Contoh 4 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan gambar kubus berikut! Pasangan garis dan bidang yang sejajar adalah ….A. AB dan BCGFB. AD dan EFGHC. CG dan ABCDD. EH dan CDHG Pembahasan Garis dan bidang dikatakan sejajar jika garis berada pada suatu bidang yang sejajar dengan bidang tersebut. Ruas garis AD berada pada bidang ABCD, di mana bidang ABCD sejajar EFGH. Sehingga, hubungan garis AD dan EFGH adalah sejajar. Jadi, pasangan garis dan bidang yang sejajar adalah AD dan EFGH. Jawaban B Demikianlah tadi ulasan pasangan garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCDEFGH. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Materi Jarak pada Dimensi Tiga Hai Quipperian, tahukah kamu jika hampir semua objek yang kamu lihat itu terdiri dari garis? Misalnya, huruf, gambar konstruksi, corak seni, papan tulis, desain baju, desain rumah, dan masih banyak lainnya. Tanpa adanya garis, tentu tidak akan terbentuk objek-objek tersebut. Memangnya, apa sih yang dimaksud garis? Untuk tahu pengertian garis, yuk simak ulasan berikut ini. Pengertian Garis Garis adalah unsur pembentuk bidang atau bangun yang terdiri dari kumpulan titik-titik. Untuk membuktikannya, cobalah kamu buat titik-titik yang saling terhubung. Semakin banyak titik yang saling terhubung, pasti semakin panjang garis yang akan terbentuk. Oleh karena hanya memiliki satu dimensi saja yaitu panjang, maka garis biasa disebut sebagai unsur geometri satu dimensi. Penulisan suatu garis bisa dilambangkan dengan huruf kecil, seperti k, m, n, dan sebagainya. Sifat-Sifat Garis Adapun sifat-sifat garis adalah sebagai berikut. Tidak memiliki pangkal dan ujung. Bisa diperpanjang di kedua sisinya, sampai tak terbatas. Biasanya dinyatakan dengan huruf kecil, kecuali untuk menjelaskan bagian-bagian garis bisa berupa kombinasi huruf kapital. Bagian-Bagian Garis Sebagai salah satu unsur geometri, garis memiliki bagian-bagian tertentu seperti berikut. Sinar Garis Sinar garis adalah garis yang memiliki pangkal, namun tidak memiliki ujung. Biasanya, sinar garis digambarkan seperti anak panah dengan tanda pangkal berupa lingkaran kecil. Perhatikan gambar berikut. Sinar garis di atas bisa dituliskan sebagai OP. Bagian pangkal tidak bisa diperpanjang lagi. Sementara bagian ujung masih bisa diperpanjang hingga tak terbatas. Ruas Garis Ruas garis adalah bagian garis yang memiliki pangkal dan ujung. Ruas garis biasa diberi tanda lingkaran kecil di kedua sisinya. Perhatikan gambar berikut. Gambar di atas merupakan contoh ruas garis PQ. Pada ruas garis, bagian pangkal dan ujung sudah tidak bisa diperpanjang lagi. Macam-Macam Garis Berdasarkan bentuknya, garis dibagi menjadi beberapa macam, yaitu sebagai berikut. Garis Lurus Garis lurus adalah garis yang bentuknya lurus. Cara membuat garis lurus itu mudah, ambillah penggaris lalu tarik garis yang searah dengan penggaris. Garis lurus dibagi menjadi dua, yaitu garis lurus horizontal dan garis lurus vertikal. Garis lurus horizontal adalah garis lurus yang arahnya mendatar. Sementara garis lurus vertikal adalah garis lurus yang arahnya tegak. Garis lurus ini biasa digunakan untuk menggambarkan bentuk geometri seperti kubus, balok, persegi, segitiga, dan lainnya. Adapun contoh garis lurus adalah sebagai berikut. Garis Putus-Putus Garis putus-putus adalah garis yang dibuat seperti patah-patah dan tidak terhubung antar elemen garisnya. Garis putus-putus ini biasa digunakan untuk menyatakan daerah penyelesaian pada kasus pertidaksamaan. Perhatikan contoh garis putus-putus berikut. Terlihat kan jika elemen garisnya tidak saling terhubung? Garis Lengkung Garis lengkung adalah garis yang bentuknya melengkung. Contoh garis lengkung bisa kamu lihat pada kurva persamaan linear dua variabel. Garis lengkung ini biasa digunakan untuk menggambarkan lingkaran, bola, kurva persamaan linear, ilustrasi ombak air laut, menggambar kubah, dan masih banyak lainnya. Adapun contoh garis lengkung adalah sebagai berikut. Garis Zig-Zag Garis zig-zag adalah garis yang berbentuk menyerupai segitiga tanpa alas yang saling terhubung satu sama lain. Garis zig-zag biasa digunakan untuk menyatakan besaran sudut pada suatu bangun datar yang dibatasi oleh beberapa garis. Adapun contoh garis zig-zag adalah sebagai berikut. Bentuk di atas hanya penggambaran sederhana dari garis zig-zag, ya. Dalam penerapannya, garis ini bisa dimodifikasi. Hubungan Antargaris Hubungan antargaris ditinjau dari posisi garis tersebut terhadap garis yang lain. Adapun hubungan antargaris adalah sebagai berikut. Garis Sejajar Garis sejajar adalah hubungan antara dua buah garis yang memiliki kemiringan atau gradien yang sama dan tidak memiliki satupun titik persekutuan. Itulah sebabnya dua garis dikatakan sejajar jika keduanya tidak pernah berpotongan di suatu titik manapun. Perhatikan contoh berikut. Dari gambar di atas, terlihat bahwa garis m sejajar dengan garis n, sehingga keduanya tidak memiliki satupun titik persekutuan. Jika kedua sisi garis m dan garis n ditarik sampai tak hingga, ujung atau pangkal keduanya tidak akan pernah bertemu atau berpotongan. Secara matematis, penulisan garis yang saling sejajar diberi tanda “//”, misalnya m // n. Garis Berpotongan Garis berpotongan adalah garis yang memiliki satu titik persekutuan. Artinya, kedua garis bertemu di titik tertentu yang biasa disebut titik potong. Jika perpotongan kedua garis membentuk sudut siku-siku 90o, maka kedua garis dikatakan saling tegak lurus. Perhatikan gambar berikut. Dari gambar di atas, terlihat kan jika garis yang saling tegak lurus membentuk sudut siku-siku? Garis Berimpit Garis berimpit adalah garis yang memiliki kemiringan yang sama dan berada pada posisi yang sama pula. Dua garis yang saling berimpit seolah-olah hanya terlihat satu garis saja. Dari gambar di atas, garis m berimpit dengan garis n, sehingga seolah-olah hanya terlihat satu garis saja. Contoh Soal Untuk mengasah kemampuanmu tentang pengertian garis, yuk simak contoh soal berikut. Contoh Soal 1 Perhatikan kumpulan garis berikut. Tentukan hubungan yang sesuai antara garis m, garis n, garis o, garis p, dan garis q! Pembahasan Untuk menentukan hubungan antara kelima garis, kamu harus meninjaunya satu persatu seperti berikut. Garis m Garis m dan garis n saling berpotongan. Garis m dan garis o saling berpotongan. Garis m dan garis p saling sejajar. Garis m dan garis q saling berpotongan. Garis n Garis n dan garis o saling sejajar. Garis n dan garis p saling berpotongan. Garis n dan garis q saling tegak lurus. Garis o Garis o dan garis p saling berpotongan. Garis o dan garis q saling tegak lurus. Garis p Garis p dan garis q saling tegak lurus. Contoh Soal 2 Analisisnya hubungan antargaris pada bangun jajar genjang! Pembahasan Perhatikan gambar jajar genjang berikut. Dari gambar di atas, apakah Quipperian sudah tahu hubungan antargaris penyusun jajar genjang? Yuk, kita bahas bersama. Garis AB dan garis CD saling sejajar karena kedua garis tidak memiliki satupun titik persekutuan. Untuk membuktikannya, cobalah kamu tarik garis AB dan CD memanjang, ya. Apakah kedua garis akan bertemu? Garis AC dan garis BD saling sejajar karena kedua garis tidak memiliki satupun titik persekutuan. Garis AB dan garis AC saling berpotongan karena memiliki satu titik persekutuan. Garis AC dan garis CD saling berpotongan karena memiliki satu titik persekutuan. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! PembahasanIngat bahwa Garis berpotongan adalah kedudukan dua garis yang mempunyai titik potong karena kedua garis saling bertemu. Sehingga, garis dan garis adalah pasangan garis yang saling berpotongan. Oleh karena itu, jawaban yang benar adalah bahwa Garis berpotongan adalah kedudukan dua garis yang mempunyai titik potong karena kedua garis saling bertemu. Sehingga, garis dan garis adalah pasangan garis yang saling berpotongan. Oleh karena itu, jawaban yang benar adalah A.

garis l dan garis m adalah pasangan garis yang saling